
1

OPEN SOURCE LICENSE
COMPLIANCE

Richard E. Fontana
Open Source Licensing &
Patent Counsel, Red Hat
May 27, 2010

2

 Historical background, definitions and characteristics
 License categories: copyleft (strong, weak), permissive
 License enforcement
 License compliance – due diligence; source code analysis;

some mechanics

AGENDA

3

 Nonproprietary code-sharing commons
 Exclusive property concepts gradually got mapped to software

(©, trade secrets, patents)
 Gave rise to business models based on contractually licensing

subsets of rights

 Free software licensing models emerged shortly thereafter –
deploying legal machinery of restrictive licenses to encourage
collaborative development, distributed improvement &
widespread adoption

HISTORICAL BACKGROUND

4

 Hundreds of licenses customarily considered FLOSS
 Newer projects standardizing around small set of popular

licenses
 No single canonical definition

 Evolving legal norms based in community consensus,
embodied in development and distribution practices

 Influential organizations: FSF, Debian, OSI, Fedora
 Everyone should adopt strictest community standards for what

is/isn’t authentic FLOSS

DEFINING FREE/LIBRE/OPEN
SOURCE

5

 Legal:
 User gets a broad © license: perpetual, RF;

 Essentially unlimited private use
 Public use restricted only in ways not customarily regarded as

unduly burdensome to software freedom
 Technical:

 Either it’s source code, or license provides for readily
available source code at no further cost

CHARACTERISTICS OF FLOSS

6

 Copyleft
 Strong
 Weak

 Permissive/Non-copyleft

LICENSE CATEGORIES

7

 License limits freedom of user to distribute derivative work under
more restrictive terms

 Usually there is some source code disclosure requirement

 Typically, that source code, at least, must be under the same
license as upstream

COPYLEFT

8

 GPLv2 by far the most widely-used FLOSS license, for
established as well as new projects

 Policy goal: Preserve free software commons, even as software
gets improved downstream

 “Strong”: licensor expectation that copyleft cover all
enhancements, regardless of artful packaging – the “whole
work”

 Circumvention should be technically cumbersome

STRONG COPYLEFT (GPL)

9

 Distribution of modified version must be under GPL
 Exception for “mere aggregation”

 No imposition of “further restrictions” on downstream exercise of
GPL rights

 Corollary: liberty-or-death clause
 Accompany binaries with complete corresponding source

code licensed under GPL
 Amount of source code ≈ copyleft scope

 What a skilled developer needs to rebuild
 System library exception

GPL REQUIREMENTS

10

 Interesting/difficult questions arise regarding GPL copyleft scope
in various technical contexts involving combinations of
components

 From a legal risk perspective, issues are mostly academic
 Projects and businesses should comply with GPL by making

good faith effort to satisfy strong copyleft policy goals
 FSF continues to provide persuasive guidance; narrow

interpretations are non-customary

GPL COPYLEFT SCOPE

11

 Originate in community criticism of strong copyleft
 Popular examples: LGPL, MPL and EPL families

 LGPLv2.x second most popular FLOSS license
 Common features:

 Copyleft scope (including source code requirement) limited
to something less than GPL “whole work”

 Can distribute proprietary executables
 Wide gap between LGPL text and liberal customary

interpretation

WEAK COPYLEFT

12

 Popular examples: BSD, MIT/X11, and Apache families
 Continuation of older public domain tradition + reaction against

strong copyleft
 Policy goal: maximize downstream adoption, protect upstream

developers from legal/reputational risk
 Derivative works licensable under more restrictive terms

(proprietary, GPL if compatible)
 Notice requirements, but no source code requirement

 But often strong social expectation to contribute some
improvements upstream

PERMISSIVE (NON-COPYLEFT)

13

 FLOSS licenses are generally assumed to be legally
enforceable (cf. Jacobsen v. Katzer)

 Litigation risk is so low that compliance is motivated principally
by ethical and social concerns

 Prior to 2000s, all license enforcement took place outside of
court system

 Active GPL enforcement after 2000 focuses mainly on
embedded device vendors, brought by small group of prominent
licensors

 Simple fact patterns: no source code – material violation

LICENSE ENFORCEMENT

14

 Understand the reasonable customary expectations of
upstream developers

 Downstream lawyers should avoid forcing community-developed
licensing traditions into ill-fitting proprietary legal frameworks

 Downstream commercial users should become upstream
contributors!

 Developing good relationships with upstream communities
minimizes enforcement risk and aids compliance

 Be wary of companies with “dual-license” business models

APPROACHING LICENSE
COMPLIANCE

15

 FLOSS license compliance is usually easy once you figure out
applicable license terms

 Both projects and vendors should exercise legal care in using
third-party code, as early as possible

 Good software development practices lead to good license
compliance

 E.g. version control facilitates GPL compliance: you know
exactly what sources were used to build a given binary

 Developers should document how to generate build

PRODUCT/PROJECT DEVELOPMENT

16

 Be able to reconstruct how code was put together and where it
came from

 Biggest problem is device vendors obtaining firmware from
suppliers without inquiry into licensing issues

 Transparency in use of third-party code aids diligence
 Projects as well as commercial product developers benefit

from explicit legal guidelines
 Developers should not use prebuilt upstream binaries!

DUE DILIGENCE – INBOUND CODE

17

 Lawyers need to acquire some skills to extract legal information
from source code

 Understand how legal information is customarily recorded
and presented by upstream developers

 COPYING files, source code ‛headers’, GPL exceptions,
disjunctive dual licensing, etc.

 Identify external dependencies
 Understand software build techniques
 Determine who committed what

SOURCE CODE ANALYSIS

18

 Notice requirements (esp. for permissive licenses)
 For binary distributions, best practice is to maintain a text file

that contains all required legal notices
 Source code requirements (copyleft licenses)

COMPLIANCE MECHANICS

19

 3-year written offer or accompany binary with source
 Latter usually preferable for vendors except in embedded

scenarios; always for projects
 Don’t use offer to postpone dealing with problem!
 FSF: for network distribution, can point to location hosted by

third party (explicit in GPLv3)
 Source offer not available for network distribution in GPLv3

 Must include build scripts and build instructions
 Should provide information on what compiler was used

SOURCE CODE REQUIREMENTS:
GPL

20

 LGPL: Can generally follow GPL rules; “suitable shared library
mechanism” eliminates source requirement

 Other weak copyleft licenses: less detailed; assume written offer
option not available

 MPL-like licenses specify minimum post-binary-distribution
time intervals

SOURCE CODE REQUIREMENTS:
OTHER

21

 Applies to binaries distributed in/for locked-down consumer
products if the GPLv3 software is modifiable by a third party

 Vendor must provide information sufficient to allow skilled
developer to install functioning modified versions on same
device, with some limits

 No known enforcement experience
 Restoration of rights following GPLv2 termination may be

conditioned on providing such information too

GPLv3 INSTALLATION
INFORMATION

22

 GPLv2 features automatic termination; key enforcement tool in
US and Germany

 GPLv3 provides two explicit cure opportunities: permanent
restoration of rights if:

 no complaint 60 days after coming into compliance
 cure within 30 days of receipt of notice of first-time violation

 May therefore be desirable to take “GPLv2-or-later” code as
GPLv3 to take advantage of cure

GPL AND TERMINATION

23

rfontana@redhat.com

mailto:rfontana@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

